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Abstract 1 

Urbanization can induce land cover changes that impact land surface temperature (LST). Many 2 

factors can influence the magnitude of urban heat, such as vegetation and aerosols. This work uses 3 

linear correlation, composite analysis, multiple linear regression, and random forest to determine 4 

the leading controls on urban LST of Bengaluru, India in the dry and wet seasons during daytime 5 

and nighttime during 2003–2018 using data from the MODerate Resolution Imaging 6 

Spectroradiometer and the European Centre for Medium-Range Forecasts ERA5 reanalysis. 7 

Results show that for the dry and wet season daytime, vegetation was the leading factor (linear 8 

correlation R = –0.74 and R =  –0.34 with urban LST) since reduced vegetation limits evaporative 9 

cooling. For the dry season nighttime, vegetation was the leading factor (R = –0.52). Limited 10 

evaporative cooling during daytime can increase surface heat retention at night. For the wet season 11 

nighttime, specific humidity was the leading factor (R = 0.21) since increased water vapor 12 

enhances downward longwave radiation and warms the surface. Therefore, urban heat is primarily 13 

controlled by vegetation in Bengaluru. However, since vegetation and specific humidity are 14 

related, mitigation strategies that increase vegetation must not increase water vapor substantially, 15 

otherwise urban heat may amplify during the wet season nighttime. 16 

 17 

Keywords: Bengaluru, India, multiple linear regression, random forest, urban heat island (UHI), 18 

urbanization 19 

 20 

1. Introduction 21 

More than half of the world’s population lives in cities and this urban population continues 22 

to increase (Kim and Baik, 2005; Grimm et al., 2008). While urbanization may have positive 23 

impacts, such as allowing for cities to be cultural and economic hubs, it can also negatively affect 24 

the natural environment. Urbanization can deteriorate air quality due to more concentrated 25 

emissions from manufacturing and vehicular traffic (Ramachandran et al., 2012). The local and 26 

regional climate can also be impacted by urbanization. For example, Kishtawal et al. (2010) found 27 

urbanization to increase the frequency of heavy rainfall over cities in India during the monsoon 28 

season. Additionally, urbanization can reduce natural vegetation, which can impact the ability of 29 

residents to see and enjoy nature (Andersson, 2006). Reduced vegetation and increased buildings 30 

decrease latent heat fluxes and increase surface roughness, which impact the planetary boundary 31 
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layer (PBL) (Garratt, 1994). As vegetation decreases, surface temperatures can rise under daytime 32 

solar heating due to lack of transpiration, leading to higher Bowen ratios. This causes urban 33 

surfaces to warm faster than suburban and non-urban areas during the daytime (Taha, 1997), and 34 

can contribute to greater heat storage (i.e., higher temperatures) at nighttime (Kim and Baik, 2002). 35 

High urban nighttime temperatures can also be amplified by less radiative cooling due to trapping 36 

of longwave radiation by urban street canyons (Theeuwes et al., 2014). This observed phenomenon 37 

of higher surface temperatures over a city compared to its surroundings is referred to as the urban 38 

heat island (UHI) effect. Of all the consequences of urbanization, increased urban heat is of 39 

particular concern because it can increase the risk of heat and respiratory related illnesses for a 40 

city’s inhabitants (Filho et al., 2018).  41 

 The magnitude of the UHI effect is often termed the UHI intensity and is measured as the 42 

temperature difference between urban and nearby non-urban areas. There are many factors that 43 

can influence UHI intensity, such as the season, time of day, local climate, geographic location, 44 

amount of vegetation, urban surface properties, population, building material, and anthropogenic 45 

factors such as aerosol emissions from factories and vehicles (Kim and Baik, 2005). For example, 46 

Peng et al. (2012) analyzed the UHI intensity for 419 cities around the world using land surface 47 

temperature (LST) data from 2003–2008 derived from the MODerate Resolution Imaging 48 

Spectroradiometer (MODIS) satellite and showed that 64% of the cities had their highest annual-49 

mean UHI intensity in the daytime (mean value of 1.5 K). The same analysis also revealed that 50 

UHI intensity is typically highest during the summer daytime (1.9 K), followed by winter daytime 51 

(1.1 K), and summer and winter nighttime are similar with a mean of 1.0 K (Peng et al., 2012). 52 

Peng et al. (2012) further showed that the magnitudes and the ordering of the strongest to weakest 53 

UHI intensity values differ by region of the world. For example, for the 209 Asian cities examined, 54 

they found that UHI intensity was highest during summer daytime (1.5 K), followed by winter 55 

nighttime (1.2 K), summer nighttime (1.0 K), and lastly winter daytime (0.9 K). Therefore, UHI 56 

intensity is observed to vary seasonally, diurnally, and regionally.  57 

 Surface properties also impact UHI intensity. As cities continue to build and decrease 58 

vegetation, surface evaporative cooling and latent heat fluxes decrease, which increases daytime 59 

temperatures, and can amplify the UHI effect (Zhou et al., 2004, 2007; Peng et al., 2012). This 60 

warming can be further augmented as PBL mixing and near-surface wind speed, which is strongest 61 

during the day, is weakened due to increased urban surface roughness from more buildings 62 



 3

(Garratt, 1994; Miao et al., 2009). Additionally, urban surfaces tend to have a lower surface albedo 63 

than vegetation, which can allow for greater absorption of shortwave radiation, and thus warmer 64 

temperatures. A related quantity to the latent heat flux is atmospheric water vapor, which can also 65 

influence the UHI intensity magnitude. Increased water vapor can enhance downward longwave 66 

radiation, allowing the surface to maintain a warmer temperature at night (Dai et al., 1999). 67 

Another related quantity is soil moisture, as dry soils can limit evapotranspiration (Dai et al., 1999). 68 

Therefore, vegetation, albedo, latent heat, near-surface wind speed, specific humidity, and soil 69 

moisture may affect urban heat.  70 

 Aerosols are another control on UHI intensity. For example, a high aerosol optical depth 71 

(AOD) in Beijing can reduce surface absorption of sunlight by 40–100 Wm-2 and decrease urban 72 

LST by 1–2 K compared to the city’s non-urban surroundings (Jin et al., 2010). Urban LST can 73 

decrease due to aerosols’ ability to absorb and scatter visible and near-infrared radiation. Typically, 74 

more pollutants are concentrated in urban areas than non-urban areas (Tie and Cao, 2009; 75 

Kanakidou et al., 2011), and they are usually in the form of black carbon that are generated from 76 

the incomplete combustion of vehicular and industrial fuels (Koelmans et al., 2006). Black carbon 77 

aerosols are strong absorbers of solar radiation (Jacobson, 2001; Ramachandran and Kedia, 2010). 78 

Therefore, black carbon can cool the surface, but warm the atmosphere during daytime (Lacis and 79 

Mishchenko, 1995; Cusack et al., 1998; Qian et al., 2003, 2006). This reduction of surface solar 80 

heating at daytime due to a high AOD can cancel or exceed the UHI effect and mainly occurs 81 

during the dry season when aerosols are not removed as easily by wet deposition (Mitchell et al., 82 

1995). Additionally, this aerosol-induced decrease in surface shortwave radiation is partly 83 

compensated by an increase in downward longwave radiation due to the ability of aerosols to 84 

scatter longwave radiation (Dufresne et al., 2002). The impact of aerosols may be responsible for 85 

extreme variations of UHI intensity. For example, Pandey et al. (2012, 2014) documented a 86 

nocturnal urban heat island throughout the year and during the daytime of the monsoon season in 87 

New Delhi, India. However, a negative UHI intensity (i.e., urban cool island) was observed for the 88 

dry season daytime, and was hypothesized to be due to increased AOD. This example further 89 

highlights how UHI intensity can vary seasonally and diurnally, and how unique observations are 90 

found when analyzing UHI intensity at the local-scale. 91 

Overall, there are many factors that can influence urban heat and these factors themselves 92 

can interact with each other. It is crucial to quantify the relationships between these factors and 93 
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understand which best explain a city’s urban heat so that the UHI formation mechanisms are 94 

understood, and proper mitigation and urban planning methods can be developed (Yang et al., 95 

2019, 2020a, 2020b, 2021; Zhang et al., 2017). For instance, if the most important factor is the 96 

latent heat flux, it would be wise for urban planners to develop mitigation strategies that increase 97 

vegetation to promote more evaporative cooling. However, if water vapor is also important for a 98 

given city, a mitigation strategy of increasing vegetation should not increase lower-tropospheric 99 

water vapor substantially because water vapor can enhance downward longwave radiation, which 100 

could counteract the effort to decrease urban heat. This highlights just one of the many intertwined 101 

relationships amongst the possible controlling factors and the items for consideration when 102 

developing mitigation strategies. 103 

Some studies have attempted to determine the leading controlling factors of urban heat for 104 

a given city through multiple linear regression (MLR) analysis. MLR is used to statistically predict 105 

one variable (predictand) from multiple other variables (predictors) when the expected relationship 106 

is linear. Assumptions of MLR include that the data are normally distributed with equal variance 107 

and that each variable is independent of one another (Vittinghoff et al., 2005). Some studies used 108 

MLR to determine the leading controls on UHI intensity. For example, Kim and Baik (2002) 109 

analyzed weather station data from Seoul, South Korea and found that the previous-day maximum 110 

UHI intensity is the most important factor in determining maximum daytime and nighttime UHI 111 

intensity on a given day; Kolokotroni and Giridharan (2008) examined weather station data from 112 

London, England and found that surface albedo is the strongest control on day and night UHI 113 

intensity; and Zhou et al. (2011) investigated Beijing, China using satellite and weather station 114 

data and found relative humidity and AOD to be the most important controls on the maximum 115 

nighttime UHI intensity. Some studies have also used MLR to investigate the controlling factors 116 

of urban air temperature. For example, Ho et al. (2014) analyzed satellite data over Vancouver, 117 

Canada and found LST and incoming solar radiation to be most important in determining peak 118 

daytime air temperature in summer, while Makido et al. (2016) examined satellite data over Doha, 119 

Qatar and found the most important variable for urban air temperature to be the distance to the 120 

coast. Recently, Guo et al. (2020) used MLR and spatial analysis methods (i.e., the spatial lag 121 

model and the spatial error model) to investigate explanatory variables in the categories of 122 

architectural form, land type, landscape index, social economy, topography, and remote sensing 123 

index on controlling urban LST in Dalian City, China. They found variables related to land type, 124 



 5

landscape index, and remote sensing index to best explain urban LST. Some of these previous 125 

studies have also applied machine learning methods to find the most important statistical 126 

associations with UHI intensity or urban temperature (e.g., Kim and Baik, 2002; Zhou et al., 2011; 127 

Ho et al., 2014; Makido et al., 2016). All of these studies found the machine learning methods to 128 

have higher accuracy compared to the their MLR analyses, likely since the assumptions of MLR 129 

may not always be valid since an environmental or climate system can be nonlinear (Smith et al., 130 

2013).  131 

In contrast to MLR, Vittinghoff et al. (2005) stated that modeling using regression trees 132 

(i.e., decision trees) with recursive partitioning does not make assumptions about the distribution 133 

of the data and the interactions between predictor variables are incorporated into the regression 134 

tree model. Recursive partitioning involves the subdivision of a sample into groups that are as 135 

similar as possible by minimizing the variance within the group in order to determine a numerical 136 

response variable. Overall, regression tree modeling makes nonlinear interactions between 137 

predictor variables easier to consider (Hastie et al., 2009; Ismail et al., 2010; Vincenzi et al., 2011), 138 

which is a major advantage over MLR. The concept of regression trees was furthered by Breiman 139 

et al. (1984) who stated that by using the power of computers, it is possible to generate thousands 140 

of regression trees. This idea became known as the random forest (RF) model in which each 141 

regression tree is grown from a resampled version of the beginning training dataset and a different 142 

random subset of input variables is evaluated for inclusion into the tree at each branch in the 143 

growing process (Breiman, 2001). Together, these sources of randomness ensure the independence 144 

of each tree. The use of the RF model has greatly enhanced determination of the leading controls 145 

and prediction accuracy for situations with multiple contributing factors in many fields, including 146 

land cover classification (Pal, 2005; Gislason et al., 2006), ecology (Prasad et al., 2006), remote 147 

sensing applications (Ismail and Mutanga, 2010; Mutanga et al., 2012), weather forecasting 148 

(McGovern et al., 2014; Williams, 2014; Gagne et al., 2017), among others, but may not 149 

necessarily be an improvement in neuroscience (Smith et al., 2013).  150 

While many studies, e.g., Kim and Baik, 2002; Zhou et al., 2011; Ho et al., 2014; Makido 151 

et al., 2016, have done novel work using regression and machine learning methods to determine 152 

controlling factors of urban heat for Seoul, Beijing, Vancouver, and Doha, individual cities are 153 

unique in how the variables might interact and influence urban heat due to their varying 154 

magnitudes and importance within the local climate. Furthermore, each city can have a different 155 
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set of potential controlling factors that may need to be considered. Therefore, the findings from 156 

these previous studies may not be applicable to other cities. 157 

One particular city, Bengaluru, India, the third most populous city of India, is a prime 158 

example of rapid urbanization. For the time between 2001 to 2011, Bengaluru experienced a 159 

47.18% increase in its population to approximately 10 million (Census of India, 2011). 160 

Additionally, Bengaluru was once known as the “Garden City” of India, but is now known as the 161 

“Silicon City” (Sudhira et al., 2007) due to the increased presence of the information technology 162 

industry and near-depletion of its natural vegetation. Bengaluru (city center: 12.97°N, 77.59°E) is 163 

centrally located in southern India on the Deccan Plateau at an elevation of 900 m. Bengaluru is 164 

characterized by a tropical savanna climate (Peel et al., 2007), in which distinct dry and wet 165 

seasons are observed. Sussman et al. (2019) recently analyzed the UHI intensity of Bengaluru 166 

seasonally and diurnally using MODIS LST data from  2003–2018. Their results showed that the 167 

highest mean UHI intensity occurred during the dry season nighttime (1.43 K), followed by the 168 

wet season daytime (1.14 K), wet season nighttime (1.02 K), and lastly the dry season daytime (–169 

0.60 K). There are many possible mechanisms for the UHI formation in Bengaluru and the lack of 170 

an UHI during the dry season daytime. Sussman et al. (2019) hypothesized that the urban cool 171 

island observed during the dry season daytime could be due to the observed increasing trend in 172 

AOD, similar to the hypothesis of Pandey et al. (2012, 2014) for New Delhi. However, since there 173 

are multiple driving factors that all occur simultaneously, more work needs to be done in evaluating 174 

the leading controls of urban heat in Bengaluru so that optimal mitigation strategies can be 175 

developed. Since Sussman et al. (2019) found that LST trends from 2003–2018 were mainly 176 

concentrated over urban areas (i.e., Figs. 4 and 5 in Sussman et al., 2019), and thus urban LST 177 

trends are contributing to trends in UHI intensity for Bengaluru, the goal of this study is to answer 178 

the following questions: 179 

     1) How strongly related are the potential drivers over the urban surface in Bengaluru? 180 

     2) Using the potential drivers over the urban surface, which best determine urban LST in    181 

         Bengaluru? 182 

     3) Using linear correlation, composite analysis, MLR, and the RF algorithms to answer   183 

   Question 2, how do these methods compare? 184 

 185 

2. Data and methods 186 
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2.1 Study region 187 

This study focused on a 50 km × 50 km region surrounding the Bengaluru city center, 188 

which is the same region analyzed by Sussman et al. (2019). This study region was chosen since 189 

it is large enough to capture all of Bengaluru and surrounding non-urban areas, yet small enough 190 

to exclude other urbanizing cities within the area.  191 

2.2 Datasets 192 

Table 1 summarizes the datasets used in this study, including their spatiotemporal 193 

resolutions and weblink. All data were analyzed for 2003–2018 since MODIS instruments Terra 194 

and Aqua have data available since March 2000 and July 2002, thus forcing the analysis to begin 195 

in 2003 in order to use data from both instruments. Terra and Aqua obtain data in 36 spectral bands 196 

that have a wavelength range from 0.4–14.4 µm and image the entire Earth’s surface every 1–2 197 

days. The sun synchronous orbital characteristics of Terra and Aqua have a daytime equatorial 198 

crossing time of approximately 10:30 and 13:30 local solar time, and a nighttime equatorial 199 

crossing time of approximately 22:30 and 01:30 local solar time. Four variables were obtained 200 

from MODIS Collection 6, which include AOD, enhanced vegetation index (EVI), land cover, and 201 

LST. For EVI and LST, in which the data are separated by instrument, the Terra and Aqua 202 

measurements were averaged. Additionally, LST data is measured at day and night, so by 203 

averaging the Terra and Aqua measurements, a daytime average is made at 12:00 local solar time 204 

and a nighttime average at 00:00 local solar time. The AOD, EVI, and land cover data were re-205 

sized to a 1 km resolution using nearest neighbor interpolation in order to match the spatial 206 

resolution of the LST data. The AOD and EVI data were also converted to 8-day composites to 207 

match the temporal resolution of the LST data. This was done since the LST data is the dependent 208 

variable for this study. Land cover did not have its temporal resolution changed since land cover 209 

is not expected to have as much short-term variability as the other variables. Lastly, the AOD data 210 

is measured in two wavelengths, namely 0.47 µm (blue band) and 0.55 µm (green band). Sussman 211 

et al. (2019) showed that these AOD measurements are approximately the same in both bands, 212 

therefore the wavelengths were averaged into a single measurement of AOD throughout this study.  213 

Albedo, latent heat, soil moisture, and 10-m zonal (u) and meridional (v) wind components 214 

were obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-215 

Land reanalysis. This data was obtained and averaged for daytime at 05:00 and 08:00 UTC (10:30 216 

and 13:30 Indian Standard Time; IST) and 17:00 and 20:00 UTC (22:30 and 01:30 IST) for 217 
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nighttime. This corresponds to the timing of the MODIS LST observations. The soil moisture was 218 

measured from the surface (0 cm) to a depth of 7 cm below the surface. The 10-m wind speed was 219 

calculated using the vector components. Specific humidity data was obtained from the ECMWF 220 

ERA5 reanalysis on pressure levels. Data was obtained for daytime and nighttime in a similar way 221 

to the ERA5-Land variables, and from 850–1000 hPa in order to calculate the lower-tropospheric 222 

specific humidity since near-surface water vapor should have the greatest influence on surface 223 

temperature. All ERA5 variables were converted to 8-day composites in the same way as MODIS.   224 

2.3 Season and urban classification 225 

Sussman et al. (2019) performed their analysis from 2003–2018 for daytime and nighttime 226 

averaged over the dry (December-January-February; DJF) and wet (August-September-October; 227 

ASO) seasons. Precipitation was found to be at its minimum during DJF and at its maximum during 228 

ASO (i.e., Fig. 1 in Sussman et al., 2019). Urban area was distinguished using the MODIS land 229 

cover dataset, and urban LST was determined by matching the urban pixels with the LST data, 230 

which were on the same spatial resolution. The calculated 8-day composite urban LST values from 231 

Sussman et al. (2019) are used in this study as the predictand in the MLR and RF analyses, together 232 

with the updated 2018 land cover data that were unavailable to Sussman et al. (2019).   233 

 All variables were classified into their urban component prior to analysis. For the MODIS 234 

variables of AOD and EVI, urban values were distinguished using the MODIS land cover dataset, 235 

similar to how urban LST was determined. To determine the urban ERA5 grids, the percentage of 236 

MODIS urban land cover pixels was calculated within each ERA5 grid. If 70% or more of the 237 

pixels were urban, the ERA5 grid was classified as urban. This threshold was chosen so that 238 

majority of a grid is urban land. If this threshold is increased to 75%, the ERA5 data would have 239 

one less urban grid, and if it were increased to 80%, the ERA5 data would have two less urban 240 

grids. No further changes occur if the threshold is increased beyond 80%. Repeating the linear 241 

correlation analysis (see Section 2.4) for the 75% and 80% thresholds revealed that while the 242 

correlation values do change, the main conclusions in terms of which variable has the highest 243 

correlation for each season and time of day do not change, likely since majority of the urban grids 244 

with the >70% threshold are still used. Therefore, the major conclusions for all analyses done in 245 

this study are likely not sensitive to this threshold. 246 

      2.4 Analysis 247 
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This work assessed the associations of AOD, albedo, EVI, latent heat, soil moisture, near-248 

surface specific humidity, and 10-m wind speed with urban LST. These factors were chosen based 249 

on the literature of the key physical drivers of urban heat (e.g., Taha, 1997; Dai et al., 1999; Kim 250 

and Baik, 2005; Jin et al., 2010; Peng et al., 2012). These factors were also chosen due to their 251 

relevance within Bengaluru. It is important to assess variables related to moisture, vegetation, and 252 

aerosols, and how they may be transported by wind given Bengaluru’s tropical location that used 253 

to be well known for its natural vegetation, but is now characterized by its increasing pollution.  254 

First, to understand the relationships between the prospective controlling factors, which 255 

could help explain underlying physical relationships between a factor and urban LST, the linear 256 

correlation (R) between each pair of predictor variables was computed for the 8-day composite 257 

data. Significance of the correlation was assessed at the 5% and 10% levels using the Student’s t-258 

test. Next, a check on whether the prospective controlling factors are inter-correlated (i.e., 259 

multicollinearity) was done. Multicollinearity is problematic because it can result in inaccurate 260 

estimates of variable importance since an independent variable can be explained by other variables 261 

used in the statistical models. The variance inflation factor (VIF) was computed for each pair of 262 

the independent variables, which is a measurement of the extent to which an independent variable 263 

can be explained by all the other independent variables in the model. In general, if VIF ≥ 10, a 264 

high degree of multicollinearity is present (Belsley et al., 1980), and thus the greater the VIF, the 265 

greater the multicollinearity. A VIF of 1 would indicate no multicollinearity. The VIF of a given 266 

variable is determined by: 267 

                                                            VIF =
	

	
��
                                                             Eq. (1) 268 

In Eq. (1), R
 is the coefficient of determination of the regression of the given variable on all other 269 

independent variables (i.e., the fraction of the variance explained by the other variables). If the 270 

VIF of a variable exceeds 10, the variable will be removed from the given analysis in order to 271 

reduce multicollinearity, starting with the variable that produced the highest VIF. The new VIF for 272 

the remaining variables will then be re-computed. This process will continue until all VIF values 273 

are less than 10. This is similar to other regression analyses such as Vu et al. (2015) in which the 274 

VIF was used to select an appropriate subset of climate variables for prediction of electricity 275 

demand.  276 

Using all prospective controlling factors not removed from the multicollinearity check, a 277 

linear correlation of the 8-day composite data was calculated between each independent variable 278 
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and urban LST. A composite analysis of the 8-day composite data followed in which for each 279 

independent variable, the values associated with the bottom (≤10th) and top (≥90th) percentiles 280 

were derived and the corresponding urban LST at those cases were found. At both thresholds, the 281 

urban LST was averaged and the significance between these two composite means of urban LST 282 

was assessed by the Student’s t-test. The composite mean difference was calculated as the cases at 283 

the top percentiles minus the bottom percentiles. This composite analysis was done to understand 284 

which of the prospective controlling factors are best associated with urban LST at extreme values. 285 

For the above calculations, significance was assessed at the 5% and 10% levels. 286 

Next, the MLR and RF statistical analyses were performed. The prospective controlling 287 

factors were first standardized by converting the 8-day composite data into anomalies relative to 288 

their 2003–2018 mean and in units of their standard deviation for each season and time of day. 289 

The standardized variables were then inputted to the MLR model to compute the standardized 290 

regression coefficients, which were used to assess variable importance. Significance of the 291 

standardized regression coefficients was tested using the Student’s t-test. The variables without 292 

standardization were then used to calculate urban LST for each season and time of day in the MLR 293 

model. The root mean square error (RMSE) and mean absolute error (MAE) were computed to 294 

compare the calculation of urban LST by MLR to observations (i.e., the direct calculation of 8-295 

day composite urban LST). The total variance explained by each MLR model (R

) was also 296 

calculated along with its significance in an effort to evaluate model performance.  297 

After the MLR analysis, the RF was used to assess variable importance. For each RF 298 

simulation, 1000 trees were used, in which each tree determined a decision on the value of urban 299 

LST. One-thousand trees were chosen in order to guarantee model stabilization (Jiang et al., 2020) 300 

and since the mean squared error calculated for the regression trees plateaued around the 900–301 

1000 tree range (not shown). Therefore, adding more than 1000 trees would not necessarily 302 

improve the results. Predictor importance was assessed by randomly permuting each predictor 303 

value and determining how much it changes the model’s prediction (Breiman, 2001). If the change 304 

is large, the predictor is likely important. Similar to the MLR analysis, the RMSE, MAE, and 305 

R



 were computed to compare the prediction of urban LST by the RF to observations.  306 

The MLR and RF results were compared for their similarities and differences in terms of 307 

their error values and explained variance. Additionally, since a model can become overfit to the 308 

data when using multiple predictors by noise in the model predictors fitting to noise in the 309 
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predictand, and thus a lower error value and higher variance explained can be obtained, a test for 310 

overfitting was done. A k-fold cross-validation (Geisser, 1975) procedure was applied to each 311 

MLR and RF model for each season and time of day. This process included the following steps: 312 

1) holding back one year’s worth of data from the training, 2) developing the models on the other 313 

data, 3) using the data from the held back year to test the model’s fit, and 4) repeating this process 314 

until all years in the dataset have been held back. K-fold cross validation obtains an independently 315 

predicted dataset that has no influence of overfitting. The R

, RMSE, and MAE were averaged 316 

over all 16 folds (i.e., 16 years from 2003–2018) and compared to the model that used all the data 317 

in fitting. Similar values indicate that the influence of overfitting is likely minimal; however, if the 318 

cross-validation values are much lower than the regular model, overfitting is likely present. 319 

For DJF daytime, it is hypothesized that AOD will be the leading control since Sussman et 320 

al. (2019) found an urban cool island at this time along with a significant, decreasing trend in LST 321 

and a significant, increasing trend in AOD over the city. For ASO daytime, it is hypothesized that 322 

EVI will be the leading control since vegetation is most abundant at this time and can therefore 323 

impact variables related to moisture and evaporative cooling. For both DJF and ASO nighttime, it 324 

is also hypothesized that the leading control is EVI. For DJF, since vegetation is decreasing 325 

(Sussman et al., 2019), causing the already dry urban surface to likely have a lesser latent heat 326 

flux, this will increase heat retention at night. A similar reasoning exists for ASO; however, the 327 

urban surface would not be as dry.  328 

 329 

3. Results 330 

3.1 Relationships among the controlling factors 331 

Figure 1 shows the linear correlation matrix between each controlling factor pair measured 332 

over the urban surface for each season and time of day. For DJF daytime and nighttime, all variable 333 

pairs between latent heat, soil moisture, EVI, and specific humidity have positive correlation 334 

coefficients that are significant at the 5% level. These four variables are all related to moisture, 335 

i.e., if there is a high amount of vegetation and soil moisture, that will increase the latent heat flux 336 

and near-surface water vapor, thus they are all directly related. In contrast, for ASO daytime and 337 

nighttime, positive correlations exist between EVI and latent heat, EVI and soil moisture, and EVI 338 

and specific humidity that are significant at the 5% level. No significant correlation is found 339 

between soil moisture and latent heat, and a negative relationship is found between latent heat and 340 
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specific humidity that is significant at the 5% level. From the ERA5 data, the 2003–2018 mean 341 

values of specific humidity are 9 g kg-1 in DJF daytime,  13.7 g kg-1 in ASO daytime, 10 g kg-1 in 342 

DJF nighttime, and 14.2 g kg-1 in ASO nighttime. Therefore, since ASO is characterized by greater 343 

near-surface moisture than in DJF, evapotranspiration in ASO may be limited by higher air 344 

saturation rather than vegetation or soil moisture, thus causing the negative relationship between 345 

latent heat and specific humidity.  346 

Another relationship shown in Fig. 1 includes the inverse correlation between EVI and 347 

wind speed in ASO daytime (R= –0.13), DJF nighttime (R= –0.36), and ASO nighttime (R= –348 

0.16). These correlations are all significant at the 5% level except in ASO daytime, where it is 349 

significant at the 10% level. Reduced urban vegetation is equivalent to increased urban land cover 350 

with more buildings, which can increase surface roughness and cause more drag, resulting in 351 

slower surface winds. In DJF daytime, the relationship is significant at the 5%, but is positive (R= 352 

0.20). The decreased amount of vegetation, and thereby warmer daytime urban surface, can 353 

increase PBL height and cause more vertical mixing and downward momentum transport, thus 354 

leading to a stronger 10-m wind speed (Dai and Deser, 1999).  355 

A common relationship that is significant at the 5% level for both seasons and time of day 356 

includes the direct relationship between AOD and specific humidity (R= 0.36 in DJF daytime, R= 357 

0.21 in ASO daytime, R= 0.35 in DJF nighttime, and R=0.24 in ASO nighttime). Most urban 358 

aerosols are typically in the form of black carbon, which can become hydrophilic in the atmosphere 359 

(McMeeking et al., 2011), and thereby increase in volume when a large amount of water vapor is 360 

present (Guo et al., 2014). A significant, inverse relationship is observed between AOD and latent 361 

heat in ASO daytime and nighttime since high moisture fluxes can induce cloud formation and 362 

precipitation, which would cause wet deposition of aerosols. The relationship between AOD and 363 

latent heat is not significant in DJF daytime nor nighttime possibly due to less vegetation and drier 364 

soils, and thereby a smaller latent heat flux compared to ASO. Another relationship with AOD 365 

includes a significant, positive correlation with albedo in ASO daytime and nighttime (R= 0.37 for 366 

both), yet a significant, negative correlation with albedo is shown for DJF daytime and nighttime 367 

(R= –0.15 for both). Since albedo is measured as the fraction of incident shortwave radiation that 368 

the surface reflects and during the dry season aerosols are abundant due to little wet deposition, 369 

the amount of shortwave radiation incident at the surface may be less and the longwave radiation 370 

reflected by the surface will be low due to a reduction of urban LST. This would result in a lower 371 
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surface albedo. In contrast, in ASO, when aerosols can be washed out of the atmosphere, more 372 

shortwave radiation may be able to reach the surface and the reflection is likely higher than in DJF 373 

due to a warmer LST, which would result in a higher surface albedo. Another relationship with 374 

albedo occurs with EVI. A negative correlation that is significant at the 5% level is found between 375 

these factors in DJF daytime and nighttime (R= –0.75 for both). During DJF, the surface is dry 376 

with little vegetation, causing the surface to warm quickly and emit more thermal radiation. This 377 

would increase the albedo of the surface given an unchanged amount of incoming solar radiation. 378 

Related to this previous relationship, significant, negative correlations exist with albedo and latent 379 

heat, soil moisture, and specific humidity in DJF daytime and nighttime since these factors are 380 

directly linked to EVI. For ASO daytime and nighttime, a significant, negative relationship also 381 

exists between albedo and latent heat, but a significant, positive relationship exists between albedo 382 

and specific humidity. This direct relationship between albedo and specific humidity could be due 383 

to how increased water vapor can enhance downward longwave radiation, thus warming the 384 

surface and increasing thermal radiation emitted, which under a constant amount of incoming solar 385 

radiation would increase surface albedo. 386 

 For the multicollinearity check, all VIF values calculated were less than 10 (not shown). 387 

Therefore, despite several significant correlations found in Fig. 1, multicollinearity appeared to be 388 

minimal, and thus none of the prospective controlling factors needed to be removed prior to 389 

analysis for factor importance. As a consequence, this alleviates a potential concern that the 390 

multicollinearity check could have removed a variable that physically could be important, but 391 

statistically was expressed by the other independent variables.  392 

3.2 Importance of the controlling factors 393 

For the linear correlation analysis between each prospective controlling factor and urban 394 

LST (Fig. 2a), the highest magnitude correlation was found with EVI in DJF daytime (R= –0.74) 395 

and was significant at the 5% level. Therefore, as urban EVI decreases, urban LST increases, likely 396 

due to less moisture content to produce a high latent flux that would otherwise cool the surface. 397 

Similarly, the other variables related to moisture, i.e., latent heat, soil moisture, and specific 398 

humidity, also exhibit negative correlations with urban LST that are significant at the 5% level in 399 

DJF daytime. A negative relationship is shown with AOD (R= –0.19) that is significant at the 5% 400 

level, indicating that as urban aerosols increase, urban LST decreases, which is likely due to 401 

increased absorption of solar radiation by aerosols. A positive correlation is shown with albedo 402 
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(R= 0.58) that is significant at the 5% level during DJF daytime, which could be caused by the 403 

reflection of solar radiation and emission of terrestrial radiation that are scattered by aerosols, and 404 

sent back towards the surface, and thus induces warming. For ASO daytime, the highest magnitude 405 

correlations are found with EVI and soil moisture (R= –0.34 for both), which are significant at the 406 

5% level. Similar to DJF daytime, all variables related to moisture have significant, negative 407 

correlations for the same physical reasons. A significant, positive correlation was found with 408 

albedo (R= 0.19), which is also similar to DJF daytime. For DJF nighttime, the highest magnitude 409 

correlation was found with EVI (R= –0.52), which is significant at the 5% level. Even though the 410 

latent heat flux is partially driven by solar radiation, and thus is at a minimum at nighttime, if it is 411 

low during the day due to low vegetation, the surface can retain more heat at night. Therefore, a 412 

significant, negative correlation was also found with latent heat (R= –0.31). Significant, positive 413 

correlations were found with albedo (R= 0.42) and specific humidity (R= 0.18) during DJF 414 

nighttime. If the aforementioned hypothesis about albedo during the daytime is correct, then this 415 

will cause a higher retention of heat at night. For specific humidity, a high amount of water vapor 416 

can enhance downward longwave radiation, and thus warm the surface. For ASO nighttime, the 417 

highest magnitude correlation was found with specific humidity (R=0.21), which is significant at 418 

the 5% level and is likely due to an enhancement of downward longwave radiation by water vapor. 419 

A significant, positive correlation was also found with AOD (R= 0.12), which could be due to how 420 

aerosols can enhance longwave radiation and warm the atmosphere during daytime as well as that 421 

water vapor can increase the volume of aerosols as determined from the relationship shown in Fig. 422 

1. A significant, negative correlation was found with wind speed in ASO nighttime (R= –0.16), 423 

indicating that a high urban wind speed can reduce urban LST (i.e., temperature advection) and is 424 

likely due to increased urban surface roughness.  425 

For the composite analysis (Fig. 2b), the largest magnitude composite mean difference for 426 

DJF daytime was found for EVI (–7.33 K), and is significant at the 5% level. Therefore, the days 427 

with EVI values greater than or equal to the 90th percentile of EVI are associated with an urban 428 

LST that is significantly lower than days with EVI values less than or equal to the 10th percentile 429 

value of EVI. This matches the correlation analysis, and similarly, all variables related to moisture 430 

show significant, negative composite mean differences in DJF daytime. Wind speed also shows a 431 

significant, negative composite mean difference (–1.98 K) due to how a high urban wind speed 432 

can advect urban heat, therefore the windiest days cause an urban LST that is significantly lower 433 
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than calm conditions. A significant, positive composite mean difference is found for albedo (6.77 434 

K), which may be related to how a high AOD can decrease surface albedo (Fig. 1), and with a 435 

lesser albedo, more heat can be retained by the surface. Similar to DJF daytime, the highest 436 

magnitude composite mean difference for ASO daytime is for EVI (–2.66 K), which is significant 437 

at the 5% level. In the correlation analysis, EVI and soil moisture had the same coefficients, but 438 

for the composite analysis, soil moisture has a mean composite difference of –1.79 K. A 439 

significant, negative composite mean difference is also found for specific humidity in ASO 440 

daytime (–0.89 K). For DJF nighttime, the highest magnitude composite mean difference was 441 

found for albedo (2.73 K); however, this is only slightly higher in magnitude than that of EVI (–442 

2.53 K), which was the variable with the highest correlation. Significant, negative composite mean 443 

differences were found for latent heat (–1.56 K) and soil moisture (–1.09 K) in DJF nighttime since 444 

these factors are also related to vegetation. A significant, positive composite mean difference was 445 

found for specific humidity (0.92 K), therefore nights with extremely high values of water vapor 446 

are associated with a significantly greater urban LST compared to nights with extremely low 447 

values of water vapor. This is likely a result of how water vapor can enhance downward longwave 448 

radiation and increase LST. For ASO nighttime, the only significant composite mean difference 449 

was found for wind speed (–0.94 K), which does not match the correlation analysis.  450 

Table 2 shows the standardized regression coefficients from the MLR analysis. According 451 

to these results, the most important variable for DJF daytime is EVI, which matches the correlation 452 

and composite analyses. EVI is also shown to be most important for ASO daytime, which matches 453 

the composite analysis and somewhat matches the correlation analysis given that soil moisture had 454 

the same correlation as EVI. For DJF nighttime, the most important variable is EVI, which only 455 

matches the correlation analysis. For ASO nighttime, near-surface specific humidity is shown to 456 

be most important, which only matches the correlation analysis. Note that in DJF daytime, the 457 

standardized regression coefficient for soil moisture is positive, despite soil moisture having a 458 

negative correlation coefficient with urban LST in Fig. 2a. In linear regression, it can be expected 459 

that the regression and correlation coefficients will have the same sign given only one predictor 460 

variable. However, since multiple predictors are used here, confounding can occur in which a 461 

predictor variable can influence the dependent variable and other independent variables, thereby 462 

resulting in a sign change for the regression coefficient compared to the correlation coefficient and 463 

possibly less reliable results (Graham, 2003). A physically unexpected sign of the regression 464 



 16 

coefficient also occurred for soil moisture in DJF nighttime. Since Fig. 1c shows that soil moisture 465 

and EVI are directly related, it would be expected that soil moisture would have a negative 466 

regression coefficient similar to EVI. Confounding also occurred for the latent heat flux regression 467 

coefficient in ASO nighttime. Since Fig. 1d shows a direct relationship between EVI and latent 468 

heat, it would be expected that latent heat would have a negative regression coefficient similar to 469 

EVI. Note that if these variables that experienced confounding are removed from the MLR 470 

analysis, the major results in terms of which variable has the highest magnitude standardized 471 

regression coefficient do not change (not shown). For the RF analysis (Fig. 3), the results continue 472 

to be consistent for DJF and ASO daytime compared to the previous methods, in which EVI is 473 

shown to be the leading control. For DJF nighttime, EVI is shown to be the most important, which 474 

matches the correlation and MLR analyses, but not the composite analysis. For ASO nighttime, 475 

albedo appears to be the leading control, which does not match any of the previous analyses.  476 

Comparing the MLR and RF methods (Fig. 4), the RMSE and MAE values are the lowest 477 

for all seasons and time of day cases for the RF model. In terms of the variance explained, for 478 

MLR, DJF daytime performed best (R

=0.65), followed by DJF nighttime (R


=0.57), ASO 479 

daytime (R

=0.26), and lastly ASO nighttime (R


=0.15). The variance explained for each RF 480 

model improved over its respective MLR model. The highest explained variance was found for 481 

DJF daytime (R

=0.92), followed by DJF nighttime (R


=0.87), ASO daytime (R

=0.79), and lastly 482 

ASO nighttime (R

=0.77). However, these improvements in error values and explained variance 483 

in the RF model may be the result of overfitting. While the MLR analysis showed to have little 484 

influence of overfitting after performing the k-fold cross-validation (not shown), the RF did have 485 

a degree of overfitting (Table 3). The overfitting is shown to be most noticeable for ASO daytime 486 

and nighttime due to large differences in the explained variance values. The range in values of 487 

urban LST is less for ASO daytime and nighttime compared to DJF daytime and nighttime (Fig. 488 

4), therefore, even if the predictors vary in magnitude, they can reach similar decisions for the 489 

predictand, likely resulting in overfitting.  490 

Overall, since all four methods show EVI to have the highest respective value for DJF 491 

daytime, it is likely the leading control on urban LST at this time. It was expected AOD would be 492 

the leading control, and while its association is statistically significant in some of the methods, 493 

results suggest that the effect of aerosols are smaller. Despite UHI intensity being negative during 494 

DJF daytime, its magnitude is smallest during DJF daytime and it does not have a significant trend 495 
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(Sussman et al., 2019). Since Bengaluru was once known as the “Garden City” of India and now 496 

as the “Silicon City” (Sudhira et al., 2007), surface changes in terms of vegetation are noteworthy 497 

qualitatively and quantitatively. These results suggest the impacts of aerosols are enough to cancel 498 

out a high UHI that would occur if only vegetation were at play during DJF daytime. For ASO 499 

daytime, while the correlation analysis produced the same value for EVI and soil moisture, all 500 

subsequent analyses showed EVI to have the highest values. Therefore, EVI is likely the leading 501 

control on urban LST during ASO daytime. This matches the hypothesis that since vegetation is 502 

most abundant during the wet season, and thus most impactful on the amount of evaporative 503 

cooling, it will likely largely influence surface temperature. For DJF nighttime, the correlation, 504 

MLR, and RF analyses show EVI to lead, while the composite analysis shows albedo to lead 505 

slightly over EVI. Therefore, three of the four methods agree. From a physical perspective, since 506 

there is great confidence that EVI is the leading control during DJF daytime, there would likely be 507 

a high retention of heat at nighttime due to a low EVI. While impacts of albedo also appear to 508 

control during DJF daytime, these impacts are not nearly as strong as EVI. Therefore, it may be 509 

more likely that EVI is the leading control during DJF nighttime, which matches the hypothesis. 510 

For ASO nighttime, the correlation and MLR analyses show specific humidity to lead, the 511 

composite analysis shows wind speed to have the only significant composite mean difference, and 512 

the RF analysis shows albedo to lead. Therefore, two methods have consensus on specific humidity 513 

while the other methods diverge. From a physical standpoint, lower-tropospheric water vapor is 514 

abundant during the wet season and is expected to be most influential at nighttime. A high water 515 

vapor content can enhance downward longwave radiation, which is the primary type of radiation 516 

at nighttime. Therefore, it may be likely that specific humidity is the leading control during ASO 517 

nighttime. EVI was hypothesized to be the leading control during ASO nighttime, and while its 518 

association is significant in some of the methods, since ASO is also characterized by high amounts 519 

of water vapor, which can be influential on surface temperature at nighttime, it amplifies the 520 

impacts of heat retention by the surface due to a low EVI.  521 

A further comparison of the MLR and RF statistical models shows that all season and time 522 

of day cases had consensus for what the leading control is, with the exception of ASO nighttime 523 

in which MLR suggested specific humidity and the RF suggested albedo. Analysis of the linear 524 

correlation (Fig. 2a) for ASO nighttime shows that correlations are weakest in magnitude 525 

compared to the other season and time of day cases, and thus are not as linear in nature. To further 526 
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illustrate these weakly linear relationships amongst the predictor variables in ASO nighttime, Fig. 527 

5 shows the relationship between urban LST and albedo. Comparing Figs. 5a–b, while the best 528 

relationship for the data is unknown, it is clear that the nonlinear curves fit the observed data better 529 

than the linear line. Comparing Figs. 5c–d, in which the predicted urban LST is plotted against 530 

albedo for MLR and RF, the nonlinearity of the relationship is best preserved by the RF predicted 531 

result, despite this prediction having the histories of the other predictors. There was consensus on 532 

specific humidity for the correlation and MLR analyses for ASO nighttime, which physically 533 

makes sense. While albedo could be important for the retention of heat at nighttime, the influences 534 

of water vapor are expected to be most impactful during ASO nighttime. Perhaps the complexity 535 

of this time, i.e., wet days and dry days both occur, water vapor is abundant, and vegetation is at 536 

its peak, yet is decreasing, is not understood by the RF. Therefore, while the RF method may be 537 

able to better capture nonlinear relationships, this machine learning method may not yet understand 538 

the physics of the data, and therefore are correct in some cases but misleading in others. 539 

 540 

4. Summary and Discussion 541 

There are multiple environmental factors that can influence a city’s UHI and these factors 542 

often are related to each other. Previous studies have tried to determine the leading controlling 543 

factors using a variety of regression and machine learning methods for different cities (e.g., Kim 544 

and Baik, 2002; Zhou et al., 2011; Ho et al., 2014; Makido et al., 2016). However, this is a research 545 

question that must be addressed at the local-scale since each city is unique in terms of which 546 

environmental factors may be important within its microclimate and how the factors interact with 547 

each other. This study built on previous work by applying a similar framework, but using variables 548 

specific to Bengaluru. The MLR and RF methods, as well as linear correlation and a composite 549 

analysis, were applied to Bengaluru to assess variable importance for urban LST from 2003–2018 550 

using MODIS and ERA5 data during the dry and wet seasons.  551 

Results showed that for both the dry and wet seasons during the daytime, as well as the dry 552 

season nighttime, EVI was the leading control. For the wet season nighttime, specific humidity 553 

was shown to be the leading control. Therefore, urban heat is primarily controlled by vegetation 554 

in Bengaluru, and thus urban heat can be reduced by increasing vegetation within the city. 555 

However, vegetation and specific humidity are related (Fig. 1). At daytime, increased specific 556 

humidity is due to an increase in the latent heat flux brought about by a high amount of vegetation. 557 
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Therefore, specific humidity and urban LST are inversely related at daytime (Fig. 2a). In contrast, 558 

specific humidity can increase urban LST at nighttime due to its ability to enhance downward 559 

longwave radiation, and thus specific humidity is directly related to urban LST at nighttime (Fig. 560 

2a). Therefore, mitigation strategies that increase vegetation must not increase water vapor 561 

substantially, otherwise urban heat may amplify during the wet season nighttime since specific 562 

humidity is the controlling factor at that time. In terms of the statistical models, results showed the 563 

RF model to have lower RMSE and MAE values and higher explained variance values compared 564 

to MLR. However, while the error values may be less and the model may perform better, it may 565 

be more accurate for the wrong reasons from a physical standpoint as well as due to overfitting.  566 

A limitation of this work includes that many different sets of controlling factors could have 567 

been chosen and assessed in different ways. For example, Makido et al. (2016) used mean albedo 568 

within a certain radius, percentage of urban area within a certain radius, percentage of vegetation 569 

within a certain radius, and distance to the coast as the controlling factors to analyze urban heat in 570 

Doha, Qatar. Therefore, even though their work also used albedo and vegetation, the variables 571 

were assessed as distance effects on urban heat. To increase robustness of the results shown here, 572 

future work should conduct modeling experiments to understand how perturbations to the leading 573 

control influences urban heat and other related variables. For example, an experiment that 574 

decreases vegetation over the urban surface, while keeping all other parameters constant, should 575 

result in an urban LST increase and a decrease in the latent heat flux, soil moisture, and specific 576 

humidity during the daytime, and vice versa for an increase in vegetation, according to the results 577 

of this study. Additional modeling experiments can also be done for the factors that were deemed 578 

to be less important to evaluate if those factors produce smaller changes in urban LST than the 579 

leading factors. Overall, modeling experiments of this nature will help to understand how much 580 

urban heat can be reduced as well as amplified if perturbing the controlling factors in both 581 

directions and better understand mechanisms.  582 
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Tables and Figures 770 

 771 

Table 1. Summary of all datasets used in this study including their spatial resolution, temporal 772 

frequency, and weblink for more information. All datasets were obtained for 2003–2018. 773 

Variable Dataset 
Spatial/Temporal 

Resolution 
Weblink 

Aerosol 
optical 
depth 
(AOD) 

MODIS 
Terra and 
Aqua 
combined 
product 
(MCD19A2) 

1 km/daily 
https://lpdaac.usgs.gov/products/mcd19a
2v006/ 

Enhanced 
vegetation 
index 
(EVI) 

MODIS 
Aqua 
(MYD13A2) 
and Terra 
(MOD13A2)  

1 km/16-day 
composites 

Aqua: 
https://lpdaac.usgs.gov/products/myd13a2v006/ 
Terra: 
https://lpdaac.usgs.gov/products/mod13a2v006/ 
 

Land cover 

MODIS 
Terra and 
Aqua 
combined 
land cover 
(MCD12Q1) 

500 m/annual 
 

https://lpdaac.usgs.gov/products/mcd12q1v006/ 
 

Land 
surface 
temperature 
(LST) 

MODIS 
Aqua 
(MYD11A2) 
and Terra 
(MOD11A2)  

1 km/8-day 
composites 

Aqua: 
https://lpdaac.usgs.gov/products/myd11a2v006/ 
Terra: 
https://lpdaac.usgs.gov/products/mod11a2v006/ 
 

Albedo 

ERA5-Land 0.1°/hourly 
https://cds.climate.copernicus.eu/cdsapp#!/data
set/reanalysis-era5-land?tab=overview  

Latent heat 
Soil 
moisture 
10-m u and 
v wind  
Specific 
humidity 
from 850–
1000 hPa 

ERA5-
Pressure 
levels 

0.25°/hourly 
https://cds.climate.copernicus.eu/cdsapp#!/data
set/reanalysis-era5-pressure-
levels?tab=overview  

 774 
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Table 2. Summary of the standardized regression coefficients for all possible controlling factors 781 

of urban LST in Bengaluru, India as determined by multiple linear regression. Bold indicates the 782 

coefficient is significant at the 10% level. Bold and underlined indicates the coefficient is 783 

significant at the 5% level. 784 

 DJF Daytime ASO Daytime DJF Nighttime ASO Nighttime 

Albedo 0.22 0.29 0.39 0.06 

AOD –0.11 –0.02 0.06 0.07 

EVI –0.79 –0.37 –0.64 –0.14 

Latent heat –0.02 0.04 –0.01 0.24 

Soil moisture 0.51 –0.19 0.40 –0.14 

Specific humidity –0.18 –0.01 0.36 0.35 

Wind speed –0.03 –0.18 –0.06 –0.14 

 785 

Table 3. Comparison of the variance explained (R
), root mean square error (RMSE), and mean 786 

absolute error (MAE) between the urban LST random forest models with the training set only (i.e., 787 

values from Fig. 4) and with cross-validation. The error values are in units of K. 788 

 
Training Set Only Cross-validation 

�
� RMSE MAE �

� RMSE MAE 

DJF Daytime 0.90 1.09 0.78 0.71 1.69 1.25 
ASO Daytime 0.79 0.95 0.75 0.26 1.37 1.13 
DJF Nighttime 0.87 0.61 0.48 0.54 0.96 0.77 
ASO Nighttime 0.77 0.57 0.42 0.14 0.79 0.60 

 789 
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 790 

Figure 1. The matrix of linear correlation coefficients among the prospective controlling factors 791 

of urban LST in Bengaluru, India for a) DJF daytime, b) ASO daytime, c) DJF nighttime, and d) 792 

ASO nighttime. A center dot (cross) indicates that the correlation is statistically significant at the 793 

10% (5%) level. The abbreviations are: aerosol optical depth (AOD), enhanced vegetation index 794 

(EVI), and specific humidity (spec. hum.). 795 



 27 

 796 

Figure 2. a) Temporal linear correlation coefficients of the prospective controlling factors with 797 

urban LST in Bengaluru, India during 2003–2018 for each season and time of day. b) The urban 798 

LST composite mean difference (K) in Bengaluru, India for the events corresponding ≥90th 799 

percentile minus ≤10th percentile of each prospective controlling factor. A center dot (cross) 800 

indicates that the correlation or composite mean difference is statistically significant at the 10% 801 

(5%) level. The abbreviations are: aerosol optical depth (AOD), enhanced vegetation index (EVI), 802 

and specific humidity (spec. hum.). 803 
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 804 

 805 

Figure 3. The predictor importance estimates for urban LST in Bengaluru, India based on the 806 

random forest (RF) model for each season and time of day. The abbreviations are: aerosol optical 807 

depth (AOD), enhanced vegetation index (EVI), latent heat (LE), and specific humidity (spec. 808 

hum.). 809 

 810 
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 811 

Figure 4. (Left column) The predicted responses (red) of urban LST in Bengaluru, India from 812 

2003–2018 based on the multiple linear regression (MLR) model for each season and time of day 813 

compared to the observed (black) time series of urban LST based on MODIS LST and land cover 814 

data. The root mean square error (RMSE) and mean absolute error (MAE) of the predicted 815 

compared to the observed are reported in each panel. The total variance explained by the MLR 816 

model (R

) and its p-value (p-val) are also shown. (Right column) Same as left column, but based 817 

on the random forest (RF) model. 818 
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 819 

Figure 5. a) The observed relationship in August-September-October (ASO) nighttime between 820 

urban LST and albedo in Bengaluru, India during 2003–2018 and the associated linear fit. b) Same 821 

as a) but with quadratic, cubic, and 4th degree nonlinear fit lines. c) The predicted urban LST by 822 

the multiple linear regression (MLR) model in relation to observed albedo in Bengaluru, India 823 

during 2003–2018 for ASO nighttime and the associated linear fit. d) The predicted urban LST by 824 

the random forest (RF) model in relation to observed albedo in Bengaluru, India during 2003–825 

2018 for ASO nighttime and the associated quadratic, cubic, and 4th degree nonlinear fit lines. The 826 

fit line equations are shown in each panel.  827 




